U1 14

Terra incognita der Quantendimension – Lokale und nichtlokale Dimensionen

Slide 7 von 9

Lokale und nichtlokale Dimensionen

Lokale Operationen bewirken Rotationen auf dem einzelnen Schachfeld (dem einzelnen Qubit). Nichtlokale Dimensionen verschränken mehrere Schachfelder (mehrere Qubits) in der Quantendimension.

00:00

Ein Qubit: Von diesen 4 Parametern sind nur 3 frei wählbar, da die Summe aus beiden Wahrscheinlichkeiten 1 ergeben muss. Diese 3 Parameter sind lokal diesen einen Schachfeld zugeordnet.

Zwei Qubits: Bei zwei Schachfeldern ergibt sich mit einer gewissen Wahrscheinlichkeit eine von vier Kombinationen. Diese vier Wahrscheinlichkeiten werden in der Quantendimension zu Schwingungen mit insgesamt 8 Parametern verallgemeinert. Da die Summe aus den Wahrscheinlichkeiten 1 ist, ergibt sich allgemein ein 7-dimensionaler Raum in der Quantendimension. Jeweils 3 Dimensionen sind lokal dem ersten beziehungsweise zweiten Schachfeld zugeordnet. Die vier Bell-Zustände befinden sich im nicht-lokalen Anteil der Quantendimension, der siebenten Dimension c, egal ob wir die Polarisation eines Photonenpaares, den Spin eines Elektronenpaares, oder andere Quantenzustände betrachten.

01:13

Drei Qubits: Wir tauchen weiter in die Quantendimension ein und betrachten 3 Schachfelder. In diesem Fall würden 3 Detektoren A, B und C acht mögliche Messergebnisse registrieren. Wie viele nichtlokale Dimensionen verbergen sich nun in der Quantendimension hinter drei Schachfeldern? Und welcher quantendimensionale Raum steckt in 64 klassischen Bits, also hinter einen Quantencomputer mit 64 Qubits?

Begleitmaterialien zu diesem Slide

Zu diesem Slide gibt es keine zusätzlichen Materialien.

Weitere Arbeits- und Infomaterialien zur gesamten Lehrreihe:

PDF-Station